What is the Web’s
Model of Computation?

Luca Cardelli

Digital Equipment Corporation
Systems Research Center

WWW5 API Workshop




The Internet makes global computation possible.
It is becoming particularly appealing for the Web.
However, “the Web” is not a single uniform structure.

We should try to understand, in general the properties of
Global Computation.



Many kinds of global information structures.

Some of them should be programmable: globa/

computers.
Programs for a global computer span multiple locations.
Main new feature: wide-area distance.

Drastic consequences for programming.



 The Web will be programmable, somehow.

* But a single global structures will not be enough.

~ Breakup of the Web.

~ IntraWebs.

~ Non-HTTP, non-JavaVM global computers.
~ Task-oriented global computers.

~ Filters and firewalls separating global computers.

 What distinguishes one global computer from another?

 How will multiple global computers interact?



To program the Web, and build API’s, we need to agree
on its model of computation.

Is it a big file system?
Is it a big multiprocessor?

Is it a big distributed object system?

Is it a big agent system?
Or something else entirely?

Or all of the above?

Or each of the above, separately?



At its essence, the Web is what HTTP lets it be.

The HTTP model is rather unusual.

~ Stateless servers.

~ Hit-and-run communication.

Should we patch it, change it, cover it up, or adapt to it?

What neat abstraction can be built on ibwww?



To program the Web we need to understand its model of
computation.

“Model of Computation” =

~ Language-independent model for API’s

~ Model on which to base language constructs.



Distributed Object Systems

Administrative Domain




The Web




What models are adequate for global structures?

~ Procedural (=> RPC/Remote execution)
~ Functional (=> Data flow)

~ Object-Oriented (=> Distributed objects)
~ Relational

~ Concurrent

~ Distributed

~ Mobile



These models have been well studied and formally
characterized.

But insufficient attention has been given to locality.

“Who is running what, when, and where?”.

~ What is an appropriate framework for formulating and
answering these question?



Is the Web (HTTP + whatever) already included in one
of these models?

“Model of Computation” = “What can be observed”.
~ Referential Integrity

~ Quality of Service

These observables are not part of traditional models.
~ Web surfers exhibit new behavior.

What models and programming constructs can we
develop to automate behavior based on such
observables? (Exceptions are not enough. No language
constructs exists for Quality of Service.)



e Different global computers may provide different
guarantees.

e Therefore, different programming languages and
models may be appropriate in each case.

* As an example, consider the following three
programming languages that support mobile
computation.



Telescript

* Telescript is an agent-based language that explicitly
deals with locality, mobility, and finiteness of resources.

e Telescript agents may migrate to new locations while
active, but cannot engage in distributed communication.

e Telescript agents run only on a dedicated global
computer that guarantees the integrity and security of
agents.



Obliq

e Obliq is an object-based language that deals with
distribution and mobility.

* Mobile computations maintain distributed connections
as they move.

e Obliq can run effectively on any single reliable global
computers, but does not deal with firewalls, security, or
widespread unreliability.



Java

e Java deals with security and multiple global computers
(its programs are allowed to cross firewalls).

* Mobility, however, is restricted to transmitting program
sources, in preprocessed form, and not computations.

* As a consequence, Java works satisfactorily in
unreliably-connected environments, since passive
sources do not maintain connections. But it does not
directly support active distributed computation. (Yet?)



Adequacy

e Each language is better suited than the others to a
particular global computer.

* None is particularly well suited for general computation
on the Web.



Semantics

* There is a need to develop semantic frameworks for
these languages.

~ Understand the computational assumptions and requirement
of each language.

~ Answer important security questions such as “Who runs what,
when, and where?”.

~ Reason about programs.



e Bot
Bot
Bot

e Assumes a relial

h agent-based and object-based.

h mobile and

n Telescript-

| distributed.
ike and RPC-like.

vle and secure global computer.

* Let us consider a peculiar example.



Uploadable API’s

* A database site exports an engine (compute server). The
engine supplies the database as an argument to
incoming client procedures:

(* DataBase Server Site *)

net_exportEngine ("DBServer", dataBase, Namer);



* A database client could send over procedures
performing queries. However, for added flexibility, the
client can instead allocate a remote object:

(* DataBase Client Site *)
let atDbServer =

net_importEngine ("DBServer", Namer);

let searchAgent =
atDbServer (
proc (dataBase)

{state => ...,

start => meth ... end,
report => meth ... end,
stop => meth ... end}

end) ;




e The execution of the client procedure causes the
allocation of an object at the server site with methods
"start", "report”, and "stop", and with a "state"

field.

e The server simply returns a network reference to this
object, and is no longer engaged (for the moment).

* The object contains uploaded client code, which can be
invoked by the client.



Before the invocation:

atDbServer

roc (dataBase)
{state => ...,
start => meth...en
report => ...,
stop => ...}

nd

d,

DbClient

DbServer

After its completion:

atDbServer

)»{state =>

searchAgent = @

DbClient

start =>

report => ..
stop => ...

()9
D

DbServer

meth...end
where dataBase =

4

}




Not a Standard Model

e The example of uploaded API does NOT follow:

~ The Java model.
It uploads a live object to a server instead of downloading dead
code to a client.

~ The Telescript model.
The client sends an “agent” to the server, but maintains
connections and control.

~ The Distributed Objects model.
A live computation is transmitted, not just data over RPC.



e Even standard programming issues acquire new facets
in a global context.



Typing

* In order to program the Web, we need some notion of

typing for the data that is exchanged.

* The Internet has in fact a rather sophisticated system of

data types (MIME).

* To enable Web programming, Web servers will have to
start providing typed data (currently, they mostly

provide HTML data).

* Moreover, this typed data wil
programming language types.

have to be mapped to



Security

* A model of security is essential for entrusting mobile
computations.

e The cryptographic underpinnings of security are well
understood.

e Butitisnotclear how to etfectively and flexibly integrate
security into programming languages and mobile
computations.

e Paranoia rules.

 What should be the syntax, static checking, semantics,
and logic of security?



Reliability

e Some global structures will always be unreliable, it
seems.

e Unfortunately, like the Web itself, these may also be the
most interesting global structures.

e Exceptions are not enough.

* We need to find programming constructs and
methodologies (“quality-of-service abstractions”) that
can increase the reliability of the substrate to tolerable
levels.



Modularity

* An appealing possibility, pursued by Java, is that
software components will be fetched dynamically over
the network, whenever the need arises.

e This approach requires stronger modularity guarantees
than ever before, as well as novel approaches to software
production, distribution, and maintenance.

]t also suggests a notion of interfaces and modules as
dynamic entities that is rarely found in current
languages.



Resource Management

e Handling of finite resources.

~ discovery, coordination, and retrieval

~ time, space, and bandwidth

e Substantial new challenges are offered by the
management of money:

~ infinitesimal transactions
~ infinite volume

~ Open commerce



Today: locally-networked personal computers with
poor global connections.

In the future: network terminals that rely heavily and
transparently on global resources.

This transformation will be associated with the
development of new computation and programming
paradigms.

These paradigms will be first embedded in libraries,
then in API’s, and finally in programming languages.



